Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea.

نویسندگان

  • Bonnie E Jacques
  • Mireille E Montcouquiol
  • Erynn M Layman
  • Mark Lewandoski
  • Matthew W Kelley
چکیده

The mammalian auditory sensory epithelium (the organ of Corti) contains a number of unique cell types that are arranged in ordered rows. Two of these cell types, inner and outer pillar cells (PCs), are arranged in adjacent rows that form a boundary between a single row of inner hair cells and three rows of outer hair cells (OHCs). PCs are required for auditory function, as mice lacking PCs owing to a mutation in Fgfr3 are deaf. Here, using in vitro and in vivo techniques, we demonstrate that an Fgf8 signal arising from the inner hair cells is the key component in an inductive pathway that regulates the number, position and rate of development of PCs. Deletion of Fgf8 or inhibition of binding between Fgf8 and Fgfr3 leads to defects in PC development, whereas overexpression of Fgf8 or exogenous Fgfr3 activation induces ectopic PC formation and inhibits OHC development. These results suggest that Fgf8-Fgfr3 interactions regulate cellular patterning within the organ of Corti through the induction of one cell fate (PC) and simultaneous inhibition of an alternate fate (OHC) in separate progenitor cells. Some of the effects of both inhibition and overactivation of the Fgf8-Fgfr3 signaling pathway are reversible, suggesting that PC differentiation is dependent upon constant activation of Fgfr3 by Fgf8. These results suggest that PCs might exist in a transient state of differentiation that makes them potential targets for regenerative therapies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling.

The auditory sensory epithelium (organ of Corti), where sound waves are converted to electrical signals, comprises a highly ordered array of sensory receptor (hair) cells and nonsensory supporting cells. Here, we report that Sprouty2, which encodes a negative regulator of signaling via receptor tyrosine kinases, is required for normal hearing in mice, and that lack of SPRY2 results in dramatic ...

متن کامل

Myosin II regulates extension, growth and patterning in the mammalian cochlear duct.

The sensory epithelium of the mammalian cochlea comprises mechanosensory hair cells that are arranged into four ordered rows extending along the length of the cochlear spiral. The factors that regulate the alignment of these rows are unknown. Results presented here demonstrate that cellular patterning within the cochlea, including the formation of ordered rows of hair cells, arises through morp...

متن کامل

Fibroblast growth factor signaling regulates pillar cell development in the organ of corti.

One of the most striking aspects of the cellular pattern within the sensory epithelium of the mammalian cochlea is the presence of two rows of pillar cells in the region between the single row of inner hair cells and the first row of outer hair cells. The factors that regulate pillar cell development have not been determined; however, previous results suggested a key role for fibroblast growth ...

متن کامل

In vivo proliferation of postmitotic cochlear supporting cells by acute ablation of the retinoblastoma protein in neonatal mice.

Cochlear hair cells (HCs) are mechanosensory receptors that transduce sound into electrical signals. HC damage in nonmammalian vertebrates induces surrounding supporting cells (SCs) to divide, transdifferentiate and replace lost HCs; however, such spontaneous HC regeneration does not occur in the mammalian cochlea. Here, we acutely ablate the retinoblastoma protein (Rb), a crucial cell cycle re...

متن کامل

beta-Catenin Regulates Intercellular Signalling Networks and Cell-Type Specific Transcription in the Developing Mouse Midbrain-Rhombomere 1 Region

beta-Catenin is a multifunctional protein involved in both signalling by secreted factors of Wnt family and regulation of the cellular architecture. We show that beta-catenin stabilization in mouse midbrain-rhombomere 1 region leads to robust up-regulation of several Wnt signalling target genes, including Fgf8. Suggestive of direct transcriptional regulation of the Fgf8 gene, beta-catenin stabi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 134 16  شماره 

صفحات  -

تاریخ انتشار 2007